top of page

SUN

tan

LESSON 4.1

Right Triangle Trigonometry

wave_edited.jpg

LESSON 4.4

Graphing Trigonometric Functions

Lesson Overview:

​

graphing cos, sin and identifying Parent function, domain, range, symmetry, x-intercept, y-intercept, and max & min.

a. Sine Function

b. Cosine Function

​

​

Part A: Graphing Sin Functions 

 

The Parent sine function is  f (t) = sin(t).

 

​

​

​

​

​

​

​

​

​

This function has an amplitude of 1 because the graph goes

one unit up and one unit down from the mid-line of the graph.

This function has a period of 2Ï€ because the sine wave

repeats every 2Ï€ units.

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

​

Part B: Graphing Cotangent Functions 

y=cos(x)

​

​

​

​

​

​

​

​

​

​

 

​

​

 
 
 
 
 
 
 
​

​

​

Graphing Trig Functions on the SAT

​

​

​

​

First, let's use the given information to determine the function's amplitude, mid-line, and period.

Then, we should determine whether to use a sine or a cosine function, based on the point where x=0, equals, 0.

Finally, we should determine the parameters of the function's formula by considering all the above.

​

The mid-line intersection is at y=3 so this is the mid-line.

The maximum point is 4 units above the mid-line, so the amplitude is  4.

The mid-line intersection is 3 units to the right of the maximum point, so the period is 12. 

​

Since the graph has an extremum point at x=0, we should use the cosine function and not the sine function.

 

a=4, d=3, b= Ï€/6

​

answer: y= 4cos (Ï€/6* x) +3

​

Graphing Trig Functions in the Real World

​

​

​

​

​

​

​

 

 

Conclusion:

In order to graph trigonometric functions you first must identify the amplitude (how far up and down the graph covers) and the period of the function which is how many units a single wave is. 

g(t) = 3sin(t)

​

​

​

​

​

​

​

​

​

​

The second graph is three times as tall as our parent function. The amplitude has changed from 1 to 3 .Whatever number A is multiplied on the trig function gives you the amplitude (that is, the "tallness" or "shortness" of the graph); in this case, that amplitude number was 3.

h(t) = sin(2t)

​

​

​

​

​

​

​

​

​

​

This third graph is squished in from the sides compared to the first graph and the sine wave is appearing twice as much. This relationship is always true: Whatever value B is multiplied on the variable (inside the trig function), you use this value to find the period. 

j(t) = sin(t â€“ Ï€/3)

​

​

​

​

​

​

​

​

​

​

The blue graph is shifted over Ï€/3 units from the regular graph.  The graph is shifted to the right or left by that number of units This right- or left-shifting is called "phase shift".

4.4 (1).gif
4.4 (2).gif
4.4 (3).gif
4.4 (4).gif
4.4 (5).gif

Properties of the Cosine Function, y=cos(x)y=cos(x) .

Domain : (−∞,∞)(−∞,∞)

Range : [−1,1][−1,1] or âˆ’1≤y≤1−1≤y≤1

yy -intercept : (0,1)(0,1)

xx -intercept : (nÏ€2,0)(nÏ€2,0) , where nn is an integer.

Period: 2Ï€2Ï€

Continuity: continuous on (−∞,∞)(−∞,∞)

Symmetry: yy -axis (even function)

The maximum value of y=cos(x)y=cos(x) occurs when x=2nÏ€x=2nÏ€ , where nn is an integer.

The minimum value of y=cos(x)y=cos(x) occurs when x=Ï€+2nÏ€x=Ï€+2nÏ€ , where nn is an integer.

4.4 (6).gif

Properties of the Cosine Function, y=cos(x)y=cos(x) .

Domain : (−∞,∞)(−∞,∞)

Range : [−1,1][−1,1] or âˆ’1≤y≤1−1≤y≤1

yy -intercept : (0,1)(0,1)

xx -intercept : (nÏ€2,0)(nÏ€2,0) , where nn is an integer.

Period: 2Ï€2Ï€

Continuity: continuous on (−∞,∞)(−∞,∞)

Symmetry: yy -axis (even function)

The maximum value of y=cos(x)y=cos(x) occurs when x=2nÏ€x=2nÏ€ , where nn is an integer.

The minimum value of y=cos(x)y=cos(x) occurs when x=Ï€+2nÏ€x=Ï€+2nÏ€ , where nn is an integer.

y=2cos(x) 

Compare the graphs.

For the function y=2cos(x), the graph has an amplitude 22 .

Since b=1, the graph has a period of 2Ï€2Ï€ .

Thus, it cycles once from 0 to 2Ï€ with one maximum of 2, and one minimum of âˆ’2 .

4.4 (6).PNG

About Us

We have created ten easy to understand trigonometry lessons over 2 key areas to help you do well in math. With our lessons you will learn how, and when to graph Sin and Cos, how to extract them to a simpler level.  I will also be explaining the purpose of the main Angles and how they can be used in different types of problems. In addition I will be emphasizing how to do expressions and how relates to Trigonometry.  

bottom of page